respectively. The functions are interpolatable in the regions tabulated, and second central differences are provided.

Y. L. L.

31 [9].-Alan Forbes \& Mohan Lal, Tables of Solutions of the Diophantine Equation $x^{2}+y^{2}+z^{2}=k^{2}$, Memorial University of Newfoundland, St. John's, Newfoundland, Canada, July 1969, x +200 pp.
Table 2 lists all solutions $0<x \leqq y \leqq z$ for all $k=3(2) 701$. Table 1 lists the number of such solutions, for each k, and the number of primitive solutions. These tables are an extension of an earlier table [1] which went to $k=381$. (See the earlier review for more detail.)

The introduction here reports a few errors in the earlier table [1].
In the earlier review I noted that (empirically) if k is a prime p, written as $8 n \pm 1$ or $8 n \pm 5$, then there are exactly n solutions here. Here is a proof: By Gauss, (see History of the Theory of Numbers by L. E. Dickson, Vol. 2, Chapter VII, Item 20) the number of proper (that is, primitive) solutions of $m \equiv 1(\bmod 8)$ as

$$
m=x^{2}+y^{2}+z^{2}
$$

counting all possible permutations and changes of sign, and allowing x, y, or z to be 0 , is

$$
3 \cdot 2^{\mu+2} H,
$$

where m is divisible by μ primes, and H is the number of properly primitive classes of binary quadratic forms of determinant $-m$ that are in the principal genus. For $m=p^{2}$, this becomes

$$
\begin{equation*}
6(p-(-1 / p)) \tag{1}
\end{equation*}
$$

proper solutions.
Each solution

$$
\begin{equation*}
p^{2}=0^{2}+x^{2}+y^{2} \tag{2}
\end{equation*}
$$

is counted 24 times by Gauss, but is omitted here. Each solution

$$
\begin{equation*}
p^{2}=x^{2}+x^{2}+y^{2} \tag{3}
\end{equation*}
$$

is counted 24 times by Gauss and once here. Each solution

$$
p^{2}=x^{2}+y^{2}+z^{2}
$$

is counted 48 times by Gauss and once here. Now examine

$$
p=8 n \pm 1 \quad \text { and } \quad p=8 n \pm 5
$$

separately, and allowing for the value of $(-1 / p)$ in (1), and whether representations (2) and (3) do or do not exist, one finds that the $6(p-(-1 / p))$ counts of Gauss become a count of n here in all four cases. Neat.

> D. S.

1. Mohan Lal \& James Dawe, Tables of Solutions of the Diophantine Equation $x^{2}+$ $y^{2}+z^{2}=k^{2}$, Memorial University of Newfoundland, St. John's, Newfoundland, Canada, February 1967. (See Math. Comp., v. 22, 1968, p. 235, RMT 23.)
